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Abstract

An accurately calibrated item bank is essential for a valid computerized adaptive test.

However, in some settings, such as occupational testing, there is limited access to test takers

for calibration. As a result of the limited access to possible test takers, collecting data to

accurately calibrate an item bank in an occupational setting is usually difficult. In such a

setting, the item bank can be calibrated online in an operational setting. This study explored

three possible automatic online calibration strategies, with the intent of calibrating items

accurately while estimating ability precisely and fairly. That is, the item bank is calibrated in

a situation where test takers are processed and the scores they obtain have consequences. A

simulation study was used to identify the optimal calibration strategy. The outcome measure

was the mean absolute error of the ability estimates of the test takers participating in the

calibration phase. Manipulated variables were the calibration strategy, the size of the

calibration sample, the size of the item bank, and the item response model.

Key Words: computerized adaptive testing, item bank, item response theory, online

calibration
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An Automatic Online Calibration Design in Adaptive Testing

     The past 15 years have seen a steady increase in the use of online testing applications in a

variety of testing settings. Computers can be used to increase statistical accuracy of test

scores using computerized adaptive testing (CAT) (van der Linden & Glas, 2000a). The

implementation of CAT is attractive because research indicates that CATs can yield ability

estimates that are more precise (Rudner, 1998, van der Linden & Glas, 2000a), can be more

motivating (Daville, 1993), easier to improve (Linacre, 2000, Wainer, 2000), and take a

shorter period of time to complete (Rudner, 1998; Wainer, 2000) than traditional tests.

Although CATs have been widely implemented within large scale educational testing

programs, the use of CATs in other settings such as in occupational testing has been limited

because of several practical challenges.

     One of the major obstacles to cost-effective implementation of CAT is the amount of

resources needed for item calibration, because of the large item banks needed in CAT. Large

testing programs have been able to overcome this with the availability of extensive resources.

Nevertheless, there has been broad interest in investigating procedures for optimizing the

calibration process (e.g. Berger 1991; 1992; 1994; Berger, King & Wong, 2000; Jones &

Nediak 2000; Lima Passos & Berger, 2004; Stocking 1990). Unfortunately, this research is

based on the assumption that a large number of test takers is available in the development

phase of a test. However, this is not the case in many applied settings.

     In reality, the lack of available test takers is one of the greatest challenges in the

development phases of a test in an occupational setting. This is the case because the

companies that purchase an occupational test are usually unwilling to invest time and

resources in letting their employees take a test unless they can use the results. To circumvent

this problem, test developers usually access test takers from a context other than the one in

which the test is to be used, that is, they access a low-stakes sample. The use of a low-stakes
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calibration sample comes with several limitations. First, there is evidence that large

motivational differences exist between test takers in low stakes calibration samples and the

intended population of test takers (Wise & DeMars, 2006). These motivational differences

introduce bias in the estimation of item parameters in the calibration phase, which will result

in biased test scores. Further, the use of a separate sample usually means extra resources in

terms of time and money in test development.

     The resources required for item calibration would be reduced if a test could be calibrated

and implemented for the intended population as quickly and fairly as possible. This would

make it attractive for possible customers to be involved in the calibration process because

they could use the results. Therefore, it is worthwhile to identify designs that make it possible

to simultaneously calibrate items and estimate ability, while treating test takers fairly. The

present study differs from previous studies in that this is an investigation of the problem of

calibrating a set of items where there is no previously available information, with the

practical constraint of maintaining fairness in test scoring. This problem is common for test

development companies that are interested in developing a new CAT when there is no

previously available paper version of the instrument.

     The purposes of this paper are to discuss calibration strategies that will make it more

practical and cost effective to develop and implement CATs in small testing programs, and to

report on a simulation study that was conducted to choose an optimal strategy. More

specifically, the paper investigates three different calibration strategies for calibrating an item

bank from scratch, with the primary objectives of calibrating items in a fair and effective

manner, while providing accurate ability estimates throughout the calibration design.

The Model

     The present study was carried out in the framework of item response theory (IRT). The

fundamental concept of IRT is that each test item is characterized by one or more parameters
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and each test-taker is characterized by a single ability parameter. The probability that a given

test-taker answers a given item correctly is given by a function of both the item’s and the test

taker’s parameters. Conditional on those parameters, the response on one item is independent

of the responses to other items. One IRT model used in this study, is the two-parameter

logistic, or 2-PL model,   

1()1exp(())iiiPabθθ=+−−

(Birnbaum, 1968). Here Pi(_) is the probability of a correct response for item i, _ is the test

taker’s ability, and ai and bi are item parameters. Further, ai is called the discrimination and bi

the difficulty parameter. A specific form of this model that is also used in this study is the

one-parameter logistic or1-PL model. In the 1-PL model the assumption is made that all

items have the same discrimination parameter. The 1-PL and 2-PL models are viable

alternatives to the 3-PL model because the guessing parameter in the 3-PL model can be

difficult to estimate in small sample sizes, as those used in this study. An additional reason

for not using the 3-PL model in this study is that a CAT algorithm is used to administer items

from an early stage in the calibration strategies described in this study. Therefore, the chances

of guessing are not as high because the ability of the respondent is matched with the difficulty

of the item.

     Calibration pertains to the estimation of the item parameters ai and bi from response data,

say data from a calibration sample. In the operational phase of CAT, the item parameters are

considered to be known and the focus becomes the estimation of _. In IRT _ can be estimated

using several different strategies. The weighted maximum likelihood estimator derived in

Warm (1989) was used to estimate ability in this study. This method is attractive because of

its negligible bias (van der Linden & Glas, 2000b).
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     What differentiates CAT from traditional tests is that items are selected optimally by an

item selection algorithm that finds the next available item from the item bank that provides

the most information about the test taker. A selection function that is often used in item

selection for CAT is Fisher’s information function. For an introduction regarding Fisher

information and alternative criteria for item selection, refer to Wainer (2000) or van der

Linden and Glas (2009a). For dichotomously scored items, the information function has the

following form:
2'()()()()iiiiPIPQθθθθ=

,

where Pi(_) is the response function for item i, P’(_) its first derivative with respect to _, and

Qi (_) = 1 - Pi(_). In CAT, the item is selected that has the maximum information in the item

pool at _ = _*, where _* is the current ability estimate for the test taker (van der Linden &

Glas, 2000b). Maximization of information minimizes the estimation error of _.

Calibration Strategies

     This study investigated the online calibration of an item bank where there was no

available information about item parameters at the beginning of the testing process. Therefore

the most equitable way to select items during the initial phase of testing was to administer

items randomly. Although random item administration does not guarantee tests with equal

difficulty levels, it does ensure that there are no systematic differences in difficulty which

would result in unfairness. Then, once sufficient data become available, optimal item

selection can be carried out with Fisher’s information function. A viable calibration strategy

would be able to progress from random to optimal item selection in a fair and effective

manner. The next section describes three plausible calibration strategies that were evaluated

in this study.
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Two-Phase Strategy

     In this strategy, labeled P2, items are administered randomly up to a given number of test

takers. For the remaining test takers the items are calibrated and administered optimally in the

form of a CAT. In the random phase, tests are scored with the assumption that all items have

a difficulty parameter equal to 0 (that is, bi = 0), and in the optimal phase tests are scored

based on the item parameters obtained in the random phase. The reason for the scoring rule in

the random phase is to obtain scores that are on the same scale as in the optimal phase. This

scoring rule is analogous to the scoring rule used in classical test theory, where a proportion-

correct score is computed assuming that all items have the same weight. Here this score is

simply converted to a score on the _ scale. The clear transition from one phase to the next

means that stakeholders can be informed about the current precision of the test, and policy

decisions about how the test should be used can be clearly defined based on the level of

precision. The transition is made when the average number of item administrations is above

some predefined value T. The optimal transition point T from the random to the optimal

phase was one of the topics in this study.

Multi-Phase Strategy

     An alternative strategy labeled M consists of more than two phases. As in the previous

strategy, the items are calibrated at the end of each phase. Table 1 illustrates an example with

the five phases that the design follows. In Phase 0, all item selection is random and ability is

estimated with the assumption that bi = 0. As in the previous strategy, also here the transition

is made when the average number of item administrations is above some predefined value T.

In the next phase, labeled Phase 1, the first three parts of the test are random, and the final

part is CAT using the item parameter estimates from data collected in the previous phase. A

transition takes place when the average number of administrations over items has doubled. In

general, a transition takes place when this average exceeds (Phase + 1) * T.  This continues
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until the final phase, where all of the items are administered optimally and the item bank is

calibrated.

     The motivation for the strategy is as follows. In phase 0, the amount of uncertainty

regarding the item parameters and the person parameters is too high to allow for optimal item

selection. In fact, this high uncertainty might introduce bias because the uncertainty estimate

in item parameters and ability could compound the error in the ability estimate. Therefore,

items are administered randomly. After the random part, ability is estimated using the item

parameters obtained in the previous phase, and this estimate serves as an initial estimate for

the adaptive part. In later phases, it is assumed that the parameters are estimated with

sufficient precision to support optimal item selection.  The inclusion of an adaptive part at the

end makes the test more effective in terms of scoring ability and in terms of calibrating items.

As with the P2 strategy there is a clear transition point between phases in this strategy.

-------------------------------------------- insert Table 1 here--------------------------------------------

Continuous Updating Strategy (C)

     Labeled C, this strategy is analogous to the previous two strategies in that items are

administered randomly and tests are scored with the assumption that bi = 0 in the first phase.

An item becomes eligible for CAT if the number of administrations of the item is above a

transition point labeled T. The proportion of optimally administered items in a test is

proportional to the number of eligible items in the item bank. Therefore, during this phase the

first part of the test is random, and the final part is CAT where items are calibrated after each

exposure and tests are scored based on the parameters computed after the latest

administration of the items. In the final phase all item selection is optimal and the items are

calibrated after each exposure, therefore, the precision of the _ estimates is continuously

improved.
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     The three calibration strategies were chosen because they represent a sample of possible

designs on a continuum ranging from one extreme where items are calibrated at a single point

in time, to the other extreme where items are calibrated constantly after each exposure, once

the items become eligible for CAT. The P2 strategy is similar to a typical random item

administration calibration design where the items are calibrated at a single point, with the

difference that ability scores are reported up to that point. Therefore, this strategy is the

easiest to implement and can be considered a control strategy for comparison purposes. The

P2 and M strategies have the advantage that test takers within the same phase are given the

same probability of success. This can help define policy decisions about how the test should

be used, based on the level of precision in the test. The C strategy has the advantage that

changes in the calibration sample can be quickly detected because calibration occurs

continuously. This would make it easier for test developers to detect mistakes in the items,

and would make it possible to get a rough measure of the characteristics of the items in the

test at an early stage of the calibration process. In addition, it is easier to detect fluctuations in

the item parameters which may be caused by item exposure with the C strategy.

Research Questions

     The main research question in this study was: Which of the three calibration strategies is

the most effective for calibrating a new item bank effectively, while estimating ability

precisely? In order to assess this in more detail the three strategies described above were

compared based on a number of criteria: the global and conditional precision of ability

estimates in a large calibration sample; the precision of the strategies at different points in the

calibration process, and for different size calibration samples; the uniformity of item

exposure; and their application under the assumptions of the 1-PL and 2-PL models. A

secondary research question was: Could accounting for the uncertainty in the parameters in



Automatic Online Calibration10

the calibration phase of a test improve the precision of the ability estimates? Both questions

were evaluated with simulation studies.

Simulation Studies

     To investigate which of the considered calibration strategies leads to the lowest overall

mean absolute error (MAE) in the estimation of ability, simulation studies were conducted.

Simulation studies make it possible to determine the true ability level of the test taker; next

the calibration design can be reproduced in order to investigate the precision of the test result

for each test taker. This cannot be done with operational data, because in practice it is

impossible to assess the actual accuracy of a test since it is not possible to know the real

ability level of a test taker. The simulation studies were programmed in Digital Visual

Fortran 6.0 standard for Windows. The simulations were designed to measure the impact of

each of the three strategies across a variety of conditions by varying the following variables:

1. The transition point T from one phase to the next. These points were varied as T = 10, 25,

50, 100, 200 item administrations.

2. The calibration sample sizes, which were varied as N = 250, 500, 1,000, 2,000, 3,000,

4,000.

3. The IRT model, varied as the 1-PL model and the 2-PL model.

4. The size of the item bank, varied as K = 100, 200, 400 items.

5. Accounting for uncertainty in the parameter estimates.

Upper and lower baselines were also simulated to compare the precision of the simulation

strategies to external criteria. MAE for an optimal test administered with a completely

calibrated item bank, labeled O, was set as a lower baseline. This was simulated by

calibrating items using strategy P2 with a transition point of 4,000. The precision of a test

administered randomly with all items having difficulty parameters of 0.0 was set as an upper

baseline.  This procedure is labeled R. The length of the test was also varied as: 20, 30 and 40
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items in certain conditions, however, only the results of the test with 20 items are reported in

this paper in order to save space. The test length and item bank sizes selected for this

simulation are typical for an occupational testing or certification program that uses a test

battery with several unidimensional CAT’s.

Method

     The three calibration strategies were compared by assessing the accuracy of the ability

estimate while in the calibration phase of the test. Once the number of test takers becomes

large and the item bank is accurately calibrated, it is expected that different calibration

designs result in similar precision, so then the calibration design is no longer of interest.

Therefore, it was important to differentiate the calibration sample from the post-calibration

sample of test takers. A calibration sample of 4,000 test takers was set in this study.

     The test takers’ _ parameters were drawn from a standard normal distribution. An item

bank was simulated by drawing item difficulty parameters from a standard normal

distribution, and item discrimination parameters from a lognormal distribution with an

expectation of 1. After each phase, items were calibrated under either the 1-PL or 2-PL model

using the method of marginal maximum likelihood estimation (Bock & Aitkin, 1981).

Optimal item selection was implemented using maximal expected information. The item

parameters were the current estimates at that point in the design of the strategy. MAE was

computed as the mean absolute difference between the true ability drawn from the N (0,1)

distribution and the ability estimated by the weighted maximum likelihood procedure. The

MAE for each strategy was then calculated by averaging across all test takers to give an

estimate of the global precision of the strategy.

     In addition to global precision, it was also of interest to investigate the precision with

which a certain test taker’s score was estimated. This conditional precision was measured at

specific points on the ability continuum (_ = -2, -1, 0, 1, 2), to give an estimate of the
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precision with which a test taker with a specific _ could be expected to be assessed within

each condition. Therefore, after each phase 4,000 test takers were simulated at each of the

five ability values, and the MAE was computed for each of the five ability values.

Results

Global Precision and Optimal Transition Points

     Before the research questions could be investigated, it was necessary to identify the

optimal point at which item selection should transition from one phase to the next in each of

the three calibration strategies. Five conditions were investigated (T = 10, 25, 50, 100, 200)

for the 1-PL and 2-PL models. The results are shown in Table 2.

-------------------------------------------- insert Table 2 here--------------------------------------------

     The table gives the MAE obtained for the three calibration strategies as well as a

completely random (R) and completely calibrated test (O), for a calibration sample size of

4,000, with item bank sizes of 100, 200 and 400 (K = 100, 200, 400), using the 1-PL and 2-

PL models. A comparison of the MAE for the three strategies indicated that the C strategy

consistently resulted in the best ability estimates across all conditions.

     The results for the 1-PL model were consistent across the item bank sizes, and indicated

that a transition point of 100 (T = 100) had the lowest MAE for the P2 strategy, T = 50 for the

M strategy, and T = 25 for the C strategy. Therefore, the most effective transition point

became lower as the number of calibration points for the strategy increased (from P2 to C).

Note that for T = 10, the MAE of the P2 and M strategies was often above the MAE of the

upper baseline (strategy R). This occurred because, in that case, the item parameters were

calculated based on 10 observations only. Therefore these estimates of the item parameters

were very poor and performed worse than the baseline estimate of bi = 0.

     The results for the 2-PL model were similar to those for the 1-PL; but they were not as

consistent. Specifically, a faster transition seemed to be optimal for the M strategy with larger
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item bank sizes. This finding seems to be a consequence of the M strategy taking a long time

to transition through the five phases in the design with large item banks.

     The general pattern in these findings is consistent with the hypothesis that a balance

between efficiency and accuracy in terms of switching from one phase to the next is

important. A quick transition resulted in a premature progression through the phases in each

strategy, because item parameter estimates still had much error. Therefore, the use of an

optimal item selection algorithm to administer items, assuming that the item parameters were

accurate, resulted in inaccurate ability estimates. On the other hand, the slower progression

through the phases resulted in loss of efficiency because the calibration procedure did not

react quickly enough in switching to the next phase, even though item parameter estimates

had stabilized. Since the results were similar across the different item bank sizes, and

between the two models, transition points of T = 100, T = 50, T = 25 were used respectively,

for the P2, M, and C calibration strategies in subsequent analyses for both the 1-PL and 2-PL

models, in order to have comparable results across settings.

Local Comparison of the Calibration Strategies

     In addition to global precision, the conditional precision of the three strategies for specific

points on the ability scale was investigated. A comparison of these and random item

administration with bi = 0 (R) as a baseline is presented in Figure 1.

-------------------------------------------- insert figure 1 here--------------------------------------------

     Figure 1 illustrates the conditional precision of the three strategies with the 1-PL model on

the left side and the 2-PL model on the right side, for item bank sizes of 100, 200, and 400

items. The horizontal axis represents the ability level of the test takers at five points on the _

scale (-2, -1, 0, 1, 2), and the vertical axis represents the MAE across the first 4,000 test

takers within each design. For the 1-PL model, the graph shows that the C strategy measured

ability more precisely than the other strategies at extreme ability scores, while all three
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strategies performed fairly equally at _ = 0. The use of random item administration with item

parameter estimates of bi = 0 performed well at _ = 0; however, this method performed much

poorer at extreme ability levels. For the 2-PL model, the three strategies performed quite

similarly with a smaller item bank, but the C strategy performed better than the other two as

the item bank size became larger. All three strategies also performed better than random item

administration for the 2-PL model, with the largest differences occurring at extreme ability

values.

A Comparison of the Strategies at Different Points in the Calibration Process

     The next research question investigated was the precision of the strategies for settings with

a limited number of test takers. In this section the examples are limited to an item bank size

of 100, because the general results across the different item bank sizes led to similar

conclusions. Figure 2a and 2b display the specific precision for each strategy at a particular

point in the calibration process. In other words, these figures present the results for how

accurately the particular test estimates ability for the nth test taker in the calibration design.

This provides information about the point at which a test can be confidently used in a high-

stakes situation. The horizontal axis represents the nth test taker in the calibration design, and

the vertical axis shows the MAE for the three strategies, as well as random item

administration (R), and a fully calibrated test (O).

-------------------------------------------- insert figure 2 here--------------------------------------------

     The results indicate that strategy C performed nearly as well as a fully calibrated test after

as few as 500 test takers for the 1-PL model; it took strategy M 1,000 test takers to reach a

similar level of precision. Strategy P2 never reached the same precision as a fully calibrated

test, which implies that the P2 strategy needs to be supplemented with additional calibration

points later in the design in order to reach the same level of accuracy. The results for the 2-PL
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model were similar to the 1-PL model, with the exception that the C strategy took a longer

time to reach precision estimates comparable to a completely calibrated test.

     These results consider the accuracy of a given test taker at a particular point in the

calibration process. Figures 2c and 2d present the cumulative precision of each strategy,

which is the average precision with which a test taker is assessed in the calibration phase of

the test, for different size calibration samples. The figure plots the average MAE of the

sample on the vertical axis, based on the number of test takers in the calibration sample on

the horizontal axis. The results were similar for the 1-PL and 2-PL models, in that the C

strategy performed considerably better than the other two strategies and random item

administration. The difference was evident after the number of test takers in the calibration

sample reached 500 for the 1-PL model, and after as few as 250 for the 2-PL model. The M

and P2 strategies resulted in ability estimates that were considerably better than random item

administration; however the calibration sample had to be at least 1,000 before a significant

difference was evident. The difference between the precision of the three strategies decreased

as the calibration sample became larger, suggesting that the benefits of using the C strategy

are highest when there is a limited number test takers.

Item Exposure

     The calibration strategies have been compared in terms of how accurately ability is

assessed in the calibration process. However, the calibration strategy should also calibrate the

entire item bank. Therefore, it was important to investigate the frequency with which items

were administered using the calibration strategies in the two models. Table 3 displays the

number of times items were administered in the three calibration strategies, for item bank

sizes of K = 100 and K = 400, in a calibration sample of 4,000 test takers. The results for the

1-PL model are presented in the upper portion, and the 2-PL model in the lower portion of the

table.
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-------------------------------------------- insert Table 3 here--------------------------------------------

     Table 3 shows a fairly uniform administration of items for all three calibration strategies

for the 1-PL model. Item administration for the 2-PL model was highly uneven for the P2 and

C strategies, but fairly balanced for the M strategy. In the C strategy, 39%, and 80% of the

items were administered fewer than 100 times, for item banks consisting of 100 and 400

items respectively.

Accounting for Uncertainty in the Parameter Estimates

     In IRT item parameters are usually estimated, and then these estimates are treated as true

parameters in subsequent analyses. Most of the literature on IRT takes this assumption for

granted. However van der Linden and Glas (2000) discovered that the impact of estimation

error can have dramatic consequences on ability estimation.

     In the current study there is known uncertainty in the parameters, because ability is

estimated with items that are in the calibration process. Therefore it is important to

investigate the consequences of taking uncertainty into account in the model. Uncertainty can

be taken into account by using a distribution of the parameter instead of a point estimate in

the estimation equation. The distribution is simply the likelihood distribution associated with

the parameter estimate, which represents the current level of confidence related to each

parameter. Here four different conditions were assessed.

1. All item parameters were treated as true parameters.

2. Uncertainty in theta was taken into account in the model, but uncertainty in the item

parameters was ignored.

3. Uncertainty in the item parameters was taken into account in the model, but

uncertainty in theta was ignored.

4. Uncertainty in all parameters was taken into account in the model.

-------------------------------------------- insert Table 4 here--------------------------------------------
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     Table 4 presents the MAE for theta calculated under each of the four conditions for the 1-

PL and 2-PL models for a calibration sample of 4,000. In general, taking uncertainty into

account in all parameters decreased precision in theta estimation. The results also indicate

that the use of a point estimate is better than a distribution in estimating theta. Taking

uncertainty in the item parameters into account did not decrease precision greatly and slightly

increases precision in the P2 strategy with the 1-PL model, and in the C strategy with the 2-

PL model.

Discussion

     The purposes of this paper was to investigate three different calibration strategies for

calibrating an item bank from scratch, with the primary objectives of calibrating items in a

fair and effective manner, while providing accurate ability estimates throughout the

calibration design. The benefits of the three strategies were tested in terms of several possible

conditions.

     The C strategy consistently outperformed the other two strategies across all test lengths,

and all item bank sizes. An example is that ability was estimated nearly as well as in a fully

calibrated test after as few as 500 test takers in a test consisting of 20 items and an item bank

consisting of 100 items for the 1-PL model. A weakness of this strategy was the non-uniform

administration of items with the 2-PL model, which lead to the calibration of a few items at

the expense of others. The M strategy might be preferred in settings where the 2-PL is used,

because this strategy resulted in a more uniform administration of items with both models.

However, a larger number of test takers were required before the precision in ability

estimation increased, which made this strategy ineffective with large item bank sizes. The P2

strategy generally resulted in a lower level of precision compared to the other two, because

items were calibrated only at one point. An alternative method would be to use the P2

strategy with follow-up calibrations instead of simply calibrating one time. The use of
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random item selection with bi = 0 for all parameters at the beginning of each strategy, led to

good ability estimates for test takers with ability estimates near the mean; however, this

method was inaccurate at estimating test takers with extreme ability values due to a consistent

shrinkage toward the mean.

     In a context where stakeholders need to know the level of precision in the test in order to

make procedural decisions about how the test should be used, it might be important that test

takers within the same phase are given the same probability of success. Here the P2 or the M

strategy would be preferred over the C strategy because the precision in the C strategy is

continuously improved.

     The C and P2 strategies resulted in a non-uniform administration of items for the 2-PL

model, because the item selection algorithm in the 2-PL model quickly resorted to selecting

the items with high discrimination parameters at the expense of the other items. This resulted

because the discrimination parameter has a multiplicative effect on the information for the

items for the 2-PL model, which leads to the selection of items with greater information at

specific points on the ability scale, over items that provide information across a broader area.

This can be efficient when there is little error in ability and item parameter estimates;

however, it is not optimal at the beginning of a test when there is a lot of insecurity

concerning a test taker’s ability, and is undesirable when there is error in the item parameters.

The use of the 2-PL model for these strategies could be a disadvantage because items can

receive a small discrimination parameter by chance due to inconsistent answering in a small

test taker population. Therefore, good items might never get the opportunity to be accurately

calibrated and used in the test with the 2-PL model, which would result in a waste of

resources for the test development organization. The optimal selection of items in the

development phases of a test with the 2-PL model could also be an advantage, however, in

settings where there is an abundant number of items, and it does not matter if some items are
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never used, because the algorithm in the 2-PL model concentrates on calibrating the items

that are likely to be the best and most frequently used in the test.

     A study by van der Linden and Glas (2000b) found dramatic impact of capitalization on

estimation errors on ability estimation using the 2-PL model with a fully calibrated test. They

highlighted four solutions for controlling the capitalization of error in ability estimation: cross

validation, controlling the composition of the item pool, imposing constraints, and using the

1-PL model. The final two are possibilities for the current context. Imposing an exposure

constraint would lead to a more uniform administration of items; however, the constraints

would also limit the efficiency of the item selection algorithm. In the context of the 1-PL

model all three calibration strategies resulted in improved ability estimates, in addition to a

uniform calibration of items. The results suggest that the 1-PL model could be used in

selecting items for the calibration phase of the test, and then once items have been accurately

calibrated, the selection algorithm could switch to the 2-PL model.

     The study also investigated the consequences of accounting for the uncertainty in the

parameter estimates with the 1-PL model. Accounting for this uncertainty lead to lower

precision in most contexts, and a slight increase in others. The mixed results and the extra

calculation time needed to account for the uncertainty in the parameters suggests that a point

estimate would be preferred in most settings, even though there is possible error in the

parameter estimates in the calibration phases of a test.

     The results of the study provide viable calibration design options for test development

orgnaizations that find it difficult to attract test takers in the development phases of a test. In

these settings, these calibration strategies offer more cost effective and practical methods for

developing large item banks, which makes it more attractive for smaller test development

organizations to take advantage of the benefits of CAT. All three methods have the advantage

over traditional booklet calibration designs in that they offer the possibility to assess test
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takers’ ability throughout the calibration of the test. This makes it more attractive for test

users and companies that purchase tests to become involved in the development phases of the

test because the results can be used. It is important for practitioners to be aware of the ethical

and legal consequences of administering scores while the test is in the calibration phase.

Therefore, it is vital to have clear guidelines about how the results should be used at different

points in the calibration process.

     The cost of developing a CAT compared to its benefits will always be compared to other

test designs. It is considerably more expensive to develop a CAT compared to a linear test.

However, the long term benefits of a CAT may outweigh the initial costs, because items can

be used longer, since they are exposed less frequently in this format. A cost-benefit analysis

based on the expected item exposure, and the benefits of CAT for the specific testing

program, can be conducted before a decision to develop a CAT is made.

     Future research could investigate the consequences of using the 2-PL model with item

exposure constraints to investigate if it can lead to a uniform calibration of items while

simultaneously estimating ability accurately. In this study, the assumption was made that

items fit the model that was used; future research could also estimate the consequences of bad

items by varying the degree to which the items fit the model. In addition accounting for

uncertainty in parameters did not increase accuracy greatly in this study; however Bayesian

methods could be explored in future studies to investigate if these models can lead to better

ability estimates when accounting for uncertainty. In addition these models can be used to

incorporate pre-existing hypotheses about item parameters. Finally, methods for filtering and

assessing fit in items during the calibration process could be considered.
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Table 1

M Strategy Design

Phase Part 1 Part 2 Part 3 Part 4

0 Random Random Random Random

1 Random Random Random CAT

2 Random Random CAT CAT

3 Random CAT CAT CAT

4 CAT CAT CAT CAT
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Table 2

Comparison of the MAE for Different Transition Points within each Calibration Strategy

Model Item bank Strategy MAE
T = 10 T = 25 T = 50 T = 100 T = 200

R 0.418
P2 0.489 0.420 0.404 0.392 0.394
M 0.453 0.395 0.389 0.396 0.402
C 0.381 0.379 0.380 0.381 0.392

K = 100

O 0.376
R 0.418
P2 0.577 0.435 0.409 0.393 0.396
M 0.417 0.397 0.392 0.408 0.420
C 0.390 0.382 0.393 0.398 0.404

K = 200

O 0.381
R 0.418
P2 0.533 0.439 0.406 0.401 0.414
M 0.430 0.410 0.405 0.414 0.420
C 0.400 0.396 0.397 0.397 0.413

1-PL

K = 400

O 0.384
R 0.405
P2 0.475 0.388 0.353 0.352 0.361
M 0.362 0.366 0.349 0.368 0.380
C 0.342 0.345 0.353 0.355 0.366

K = 100

O 0.342
R 0.405
P2 0.460 0.352 0.351 0.349 0.373
M 0.366 0.340 0.346 0.381 0.394
C 0.335 0.324 0.329 0.352 0.369

K = 200

O 0.323
R 0.405
P2 0.450 0.368 0.356 0.362 0.416
M 0.344 0.354 0.375 0.401 0.406
C 0.339 0.330 0.348 0.366 0.414

2-PL

K = 400

O 0.311
Note: Best results for each strategy within each condition are printed in bold.
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Table 3

Number of Times Items were Administered for each Strategy within each Model

Model Item bank Strategy Number of administrations
<100 100-

199
200-
399

400-
599

600-
799

800-
999

>1000

1-PL K = 100 P2 0 2 13 21 31 18 15

M 0 0 6 28 31 23 12

C 0 0 0 32 39 6 23

K = 400 P2 0 286 103 6 1 0 4

M 0 316 64 8 0 0 12

C 0 262 142 0 0 0 0

2-PL K = 100 P2 12 30 11 8 4 5 30

M 0 45 7 8 5 6 29

C 39 6 6 10 6 5 28

K = 400 P2 136 198 22 11 15 6 12

M 1 355 19 7 8 8 10

C 320 17 18 8 6 4 27



Automatic Online Calibration26

Table 4

Global Precision: MAE for Four Methods of Calculating Theta Based on Taking

Uncertainty in Parameters into Account

Model Strategy
All parameters
treated as true

parameters

Uncertainty
in theta is
taken into
account

Uncertainty in
the item

parameters is
taken into
account

Uncertainty in
all parameters is

taken into
account

1-PL P2 .392 .394 .388 .390

M .389 .400 .392 .394

C .379 .392 .381 .388

2-PL P2 .352 .366 .353 .367

M .349 .356 .354 .354

C .345 .350 .344 .359
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Figure Caption

Figure 1: Conditional precision: MAE at specific points on the _ continuum for strategies P2,

M, C and random item administration (R) for the 1-PL model on the left, and the 2-PL model

on the right, presented for an item bank size of 100 on the top, followed by an item bank size

of 200, and finally an item bank size of 400 on the bottom.

Figure 2: Top: Specific precision of each strategy, random item administration (R), and a

completely calibrated test (O) for test taker number 250, 500, 1000, 2000, 3000 and 4000 for

the 1-PL model on the left, and the 2-PL model on the right.

Bottom:  Cumulative precision of each strategy and random item administration (R), for 250,

500, 1000, 2000, 3000 and 4000 test takers for the 1-PL model on the left, and the 2-PL

model on the right.



                                                        K = 100

                                                        K = 200

                                                        K = 400



a. Specific precision, 1-PL model  b. Specific precision, 2-PL model

c. Cumulative precision, 1-PL model d. Cumulative precision, 2-PL model


